Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis

نویسندگان

  • Jen-Chung Liao
  • Weng-Pin Chen
  • Hao Wang
چکیده

BACKGROUND Traditional one-above and one-below four-screw posterior short-segment instrumentation is used for unstable thoracolumbar burst fractures. However, this method has a high rate of implant failure and early loss of reduction. The purpose of this study was to use finite element (FE) analysis to determine the effect of treating thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture. METHODS An intact T11-L1 spine FE model was created from the computed tomography images of a male subject. Four fixation models with posterior fusion devices (pedicle screws, rods, cross-link) were established to simulate an unstable thoracolumbar fracture with different fusion surgeries: short-segment fixation with: 1) a link (S-L); 2) intermediate bilateral screws (S-I); 3) a link and calcium sulfate cement (S-L-C); 4) intermediate bilateral screws and calcium sulfate cement (S-I-C). Different loading conditions (flexion, extension, lateral bending, and axial rotation) were applied on the models and analyzed with a FE package. The range of motion (ROM), and the maximum value and distribution of the implant stress, and the stress in the facet joint, were compared between the intact and fixation models. RESULTS The ROM in flexion, extension, axial rotation, and lateral bending was the smallest in the S-I-C model, followed by the S-I, S-L-C, and S-L models. Maximum von Mises stress values were larger under lateral bending and axial rotation loadings than under flexion and extension loading. High stress was concentrated at the crosslink and rod junctions. Maximal von Mises stress on the superior vertebral body for all loading conditions was larger than that on the inferior vertebral body. The maximal von Mises stress of the pedicle screws during all states of motion were 265.3 MPa in S-L fixation, 192.9 MPa in S-I fixation, 258.4 MPa in S-L-C fixation, and 162.3 MPa in S-I-C fixation. CONCLUSIONS Short-segment fixation with two intermediate pedicle screws together with calcium sulfate cement at the fractured vertebrae may provide a stiffer construct and less von Mises stress of the pedicle screws and rods as compared to other types of short-segment fixation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomechanical Analysis of Pedicle Screw Fixation for Thoracolumbar Burst Fractures.

Treatment of unstable thoracolumbar burst fractures remains controversial. Long-segment pedicle screw constructs may be stiffer and impart greater forces on adjacent segments compared with short-segment constructs, which may affect clinical performance and long-term out come. The purpose of this study was to biomechanically evaluate long-segment posterior pedicle screw fixation (LSPF) vs short-...

متن کامل

A comparative analysis of the efficacy of short-segment pedicle screw fixation with that of long-segment pedicle screw fixation for unstable thoracolumbar spinal burst fractures

The indications for operative treatment and type of stabilization procedures for the treatment of thoracolumbar burst fracture remain controversial. As surgical reconstruction for the thoracolumbar burst fracture, both long-segment pedicle screw fixation and short-segment pedicle screw fixation including fractured vertebral body have been used widely. The present study evaluated the efficacy of...

متن کامل

Short Segment versus Long Segment Pedicle Screws Fixation in Management of Thoracolumbar Burst Fractures: Meta-Analysis

Posterior pedicle screw fixation has become a popular method for treating thoracolumbar burst fractures. However, it remains unclear whether additional fixation of more segments could improve clinical and radiological outcomes. This meta-analysis was performed to evaluate the effectiveness of fixation levels with pedicle screw fixation for thoracolumbar burst fractures. MEDLINE, EMBASE, the Coc...

متن کامل

Treatment of Unstable Thoracolumbar Fractures through Short Segment Pedicle Screw Fixation Techniques Using Pedicle Fixation at the Level of the Fracture: A Finite Element Analysis

OBJECTIVE To compare the von Mises stresses of the internal fixation devices among different short segment pedicle screw fixation techniques to treat thoracic 12 vertebral fractures, especially the mono-segment pedicle screw fixation and intermediate unilateral pedicle screw fixation techniques. METHODS Finite element methods were utilised to investigate the biomechanical comparison of the fo...

متن کامل

Pedicle screw instrumentation of thoracolumbar burst fractures: Biomechanical evaluation of screw configuration with pedicle screws at the level of the fracture

BACKGROUND Posterior fixation alone may not be adequate to achieve and maintain burst fracture reduction. Adding screws in the fractured body may improve construct stiffness. This in vitro study evaluates the biomechanical effect of inserting pedicle screws in the fractured body compared with conventional short- and long-segment posterior fixation. METHODS Stable and unstable L2 burst fractur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017